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We study the intermittency and noise of dislocation systems undergoing shear deformation. Simulations of
a simple two-dimensional discrete dislocation dynamics model indicate that the deformation rate exhibits a
power spectrum scaling of the type 1/ f�. The noise exponent is far away from a Lorentzian, with ��1.5. This
result is directly related to the way the durations of avalanches of plastic deformation activity scale with their
size.
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I. INTRODUCTION

Traditionally, the plastic deformation of solids has been
thought of as a smooth process, so that the fluctuations can
be neglected on large enough scales as the behavior becomes
homogeneous. Contrary to this old paradigm, very recent
evidence from experiments points out clearly that plastic de-
formation proceeds via bursts of dislocation activity �1–7�.
This activity, due to the long-range interactions, should have
extended spatial and temporal correlations. Supporting this
new picture, a number of simulation studies of simplified
models �2,8–10� have demonstrated that such bursts or ava-
lanches can be characterized by, apparently, scale-free size
distributions.

These advances bring plasticity close to a multitude of
systems exhibiting “crackling noise” �11�. This is a generic
property of many nonequilibrium systems, such as earth-
quakes �12�, Barkhausen noise in ferromagnets �13�, fracture
�14,15�, vortex avalanches in superconductors �16�, and mar-
tensitic shape memory alloys �17� to name a few. The com-
mon features among these are metastability and avalanches
of activity that intercept quiescent periods. The realization
that plastic deformation has rich internal dynamics is of in-
terest for both physics and materials science. Dislocations
provide an interesting example of the physics of systems
with long-range interactions competing with pinning from
obstacles such as impurities, grain boundaries, and other dis-
locations �1,18� �“forest hardening” being a well-known ex-
ample of the ensuing phenomena�.

Such avalanching systems are most simply studied by the
one-dimensional activity time series V�t�. In plasticity, V
could be the global strain rate, or the acoustic emission �AE�
activity during deformation, or in a constant-strain-rate ex-
periment the shear stress. In this work we consider the tem-
poral characterization of dislocation activity and show that
its power spectrum �PS� exhibits what is known as 1/ f noise,
P�f��1/ f�. This “flicker” noise is a well-known but rela-
tively little understood phenomenon in various fields of sci-
ence �19�. Then, we relate the scaling exponent � to the
characteristic scaling of the avalanches. This has to be done
with care due to the low-level background activity included
in V. Finally, we are able to demonstrate that the noise of
irreversible deformation may follow generic, experimentally
verifiable scaling laws. We use a simple two-dimensional

�2D� discrete dislocation dynamics �DDD� model �8�, and
study its behavior in the steady-state regime with a constant
shear stress and a small �on the average constant� deforma-
tion rate. While the statistics of avalanche sizes in this kind
of model has been established to be of power law type �2,8�,
no temporal scaling analysis has been presented so far.

The PS P�f� of a time series V�t� is the absolute square of
the Fourier transform of V�t�,

P�f� � �� ei2�ftV�t�dt�2

. �1�

Since the time-time correlation function and the PS are re-
lated, the latter is a measure of temporal correlations in the
system. � values less than 2 indicate the presence of complex
time correlations. Recently it has been realized that under
certain fairly general conditions the exponent � can be de-
rived from the scaling exponents characterizing the ava-
lanche distributions, the examples ranging from models of
Barkhausen noise �20�, to self-organized criticality �21� to
fluid invasion into disordered media �22�. The intermittency
is easier to understand in toy models like sandpile models of
self-organized criticality �23�, where V�t� drops to zero be-
tween avalanches. In most experiments and more realistic
model systems—such as here—there is a background �from
noise, or processes that coexist with the avalanches�. Also,
finite drive rates can lead to merging of avalanches, and thus
to problems in characterizing the underlying activity.

The structure of the paper is as follows. In Sec. II we
introduce the 2D DDD model, and in Sec. III the scaling
relation relating the power spectrum exponent to the ava-
lanche statistics is presented. Results of the numerical simu-
lations are presented in Sec. IV. Section V finishes the paper
with conclusions.

II. DDD MODEL

Despite its simplicity, the DDD model we study here has
been shown to capture many features of realistic plasticity,
such as avalanches with scale-free size distributions �2,8� as
well as the Andrade creep law �24�. It is a two-dimensional
model representing a cross section of a crystal with single-
slip geometry. The dislocations are assumed to be straight
parallel edge dislocations, with the dislocation lines oriented
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along the z axis. They glide along directions parallel to their
Burgers vectors b= ±bux, with ux the unit vector in the x
direction. It is thus sufficient to consider a two-dimensional
system �i.e., the xy plane� with N pointlike edge dislocations
gliding in the x direction. Equal numbers of dislocations with
positive and negative Burgers vectors are assumed. For sim-
plicity other processes contributing to dislocation motion
such as dislocation climb are not considered.

An essential feature of the model is that the dislocations
interact with each other through their anisotropic long-range
stress fields

�s�r� = Db
x�x2 − y2�
�x2 + y2�2 , �2�

where D=� /2��1−��, with � the shear modulus and � the
Poisson ratio of the material. We assume overdamped dy-
namics with a linear force-velocity relationship, giving rise
to the equations of motion of the form

�d
−1vn

b
= snb	 


m�n

sm�s�rnm� + �� , �3�

where vn is the velocity of the nth dislocation, �d is the
dislocation mobility, sn refers to the sign of the Burgers vec-
tor of the nth dislocation, and � is the external shear stress
experienced by the dislocation. These equations are put into
a dimensionless form by measuring lengths in units of b,
times in units of 1 / ��dDb�, and stresses in units of D. Due to
the long-range nature of the dislocation-dislocation interac-
tion, periodic boundary conditions are implemented with an
infinite sum of images �25�. The positions rn, n=1, . . . ,N, of
the N dislocations as a function of time are computed by
integrating the equations of motion �3� numerically by using
an adaptive step size fifth-order Runge-Kutta algorithm.

For small distances, Eq. �2� ceases to be valid. Thus for
distances smaller than 2b from the dislocation, we set the
dislocation stress field to zero. This procedure removes the
unphysical singularity in Eq. �2�. Furthermore, when the dis-
tance rnm between two dislocations with Burgers vectors of
opposite sign gets small, i.e., rnm�2b, we employ a phenom-
enological annihilation reaction by simply removing them
from the system. To compensate, and to include dislocation
multiplication �as in real plasticity through Frank-Read
sources�, we introduce a mechanism to create new disloca-
tions. The system is split into smaller cells and then one
monitors both the local stress and the number of pinned dis-
locations �i.e., those moving slower than a threshold veloc-
ity� in each cell. Given pinned dislocations and that the local
stress exceeds a threshold value, a dislocation pair with op-
posite Burgers vectors is generated with a probability propor-
tional to the absolute local stress value. This means that on
the average it takes a finite time for the source to create a
new dislocation pair, as is the case with real dislocation
sources. The two new dislocations of opposite sign are in-
serted into random locations inside the neighboring cells of
the one containing the activated source. This is done with the
constraint that their combined stress field must decrease the
magnitude of the local stress at the source location, while
elsewhere in the system further dislocation activity may be

triggered, resulting in a correlated sequence of dislocation
activity.

III. SCALING OF THE POWER SPECTRUM

Consider a bursty time series V�t� consisting of tempo-
rally separated avalanches. The usual definition of an ava-
lanche is a connected sequence of values of V�t� exceeding
some threshold value Vth, to, e.g., subtract uncorrelated back-
ground noise. If an avalanche starts at t=0 and ends at t=T,
the size s of an avalanche of duration T is defined as s�T�
=�0

T�V�t�−Vth�dt. Assume that the average avalanche size
s�T�� of avalanches of a given duration T scales as a power
law of the duration,

s�T�� � T	st, �4�

and that the avalanches are self-similar so that the averaged
avalanche shapes V�T , t� of avalanches of different durations
T can be collapsed onto a single curve by using the ansatz

V�T,t� = T	st−1fshape�t/T� . �5�

Here, fshape�x� is a scaling function. The total energy is ob-
tained as the 
=0 component of the stationary time-time
correlation function, defined by C�
�=�V�t�V�t+
�dt. By
cosine transforming the time-time correlation function
C�
 �s� of avalanches of a given size s, one obtains the scal-
ing form

E�f �s� = s2gE�f	sts� �6�

for the corresponding energy spectrum. The scaling of the
total power spectrum then follows by averaging E�f �s� over
the avalanche size probability distribution Ds�s�, e.g., a
power law Ds�s��s−�s cut off at s=s*, so that

P�f� = f−	st�3−�s��s*f	st

dx x2−�sgE�x� . �7�

The result will depend on the value of �s as well as on the
form of the scaling function gE�x� �20,21�. In the case
gE�x��1/x �20,21� and �s�2 �for the DDD models at hand,
the latter condition seems to be satisfied, with �s�1.6 �8��
the power spectrum scales as

P�f� � f−	st. �8�

This indicates a scaling relation �=	st, which possibility we
next check with simulations.

IV. RESULTS

A natural choice for the time series is the “collective ve-
locity” of the dislocations, V�t�=
i�vi�. It is proportional to
the energy dissipated per unit time by the dislocation system.
Thus the statistical properties of V�t� could be related to the
�AE� statistics, as suggested by a number of authors �see Ref.
�1��. Another possibility is Vs�t�=
ibivi, i.e., the global strain
rate. We mainly present results here for the first choice.

The numerical simulations are started from a random ini-
tial configuration of N0 dislocations with equal numbers of
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positive and negative Burgers vectors �here L=200b and
300b, with N0=600 and 1000, respectively�. The system is
first let to relax in the absence of external stress, until it
reaches a metastable arrangement with N�N0. Then a small
constant external stress is applied and the evolution of the
system is monitored. In the absence of dislocation multipli-
cation, the system undergoes a “jamming transition” at a
critical value �c of the external stress �24�. For �=�c, the
strain rate decays as a power law in time, with the Andrade
power law creep exponent close to −2/3. For ���c�0.01,
the system crosses over to a constant strain rate regime �lin-
ear creep� which we study next.

With the dislocation multiplication turned on, the system
displays intermittent avalanche-like bursts of dislocation ac-
tivity. The number of dislocations fluctuates around N
�300 for L=200b and N�600 for L=300b. Figure 1 shows
that V�t� displays intermittent behavior, consisting of ava-
lanches. These are defined as a connected sequence of V�t�
values exceeding a threshold value Vth and have a wide range
of sizes. Here, we monitor V�t� for external stress values
close to but above the critical value �c.

Figure 2 exhibits the average avalanche shapes �one needs
a minimum duration, of the order of 10, for scaling�, for
varying Vth. They appear to agree with Eq. �5�. The data have
been obtained by scaling all individual avalanches in a given
duration range according to Eq. �5�. The threshold value Vth
does not have any effect on the s�T� statistics �given that Vth

is high enough such that a “noise level” corresponding to
incoherent motion of dislocations is not taken into account�,
but the avalanche shapes appear to depend on Vth. For small
Vth values, avalanches are clearly asymmetric to the left �in
agreement with experiments �26��, but become more sym-
metric upon increasing Vth. This asymmetry is also manifest
in the creation rate of dislocations during an avalanche �inset
of Fig. 2�. In Fig. 3 we show the energy spectra computed
using the Lomb periodogram, scaled according to Eq. �6�.
The behavior of the scaling function gE�x� indicates that
gE�x��1/x.

The main result is shown in Fig. 4, where we compare the
scaling of the total power spectrum, from V�t�, with that of
s�T��. We observe a PS of the form P�f�� f−	st spanning
almost two decades, with 	st�1.5. Thus the PS of disloca-
tion activity is related here to the intrinsic scaling of the
avalanches. The extension of the scaling regime increases
with L, the system size �Fig. 5�, with a cutoff frequency
fcutof f roughly equal to the system-size-dependent inverse du-

ration of the longest avalanche, fcutof f �Tmax
−1 �L�. The absence

of scaling for the very highest frequencies �f �0.1� is due to
a finite crossover time, before the avalanches have a self-
similar structure. Similarly to the exponent of the avalanche
size distribution �2�, the exponent of the power spectrum is
interestingly insensitive to the value of the external stress. In
the inset of Fig. 4 we consider the PS of the total strain rate.
While the scaling region appears somewhat narrower in this
case, the exponent � is observed to be unchanged from 1.5.

FIG. 1. An example of the time series V�t�=
i�vi� from a system
of linear size L=300b, �=0.03. Time is reported in units of
1 / ��dDb� and V in units of �dDb2. In the steady state, the system
contains on the average about 600 dislocations.

FIG. 2. �Color online� The average scaled avalanche shape for
different threshold values Vth for �=0.03 and L=300b. For small
threshold values the avalanches are asymmetric with the asymmetry
decreasing with Vth. The thick lines with circular symbols corre-
spond to an average over of the order of 103 avalanches, which have
been scaled according to Eq. �5� before averaging. The thin solid
lines correspond to avalanches of different limited duration ranges.
The inset displays the average creation and annihilation rates �rc

and ra, respectively� of dislocations during an avalanche, with Vth

=5.

FIG. 3. �Color online� The scaled energy spectrum of disloca-
tion avalanches, showing the form of the scaling function gE�x�,
which is consistent with the gE�x��1/x behavior, indicated by the
thick solid line. The data have been obtained by computing the
energy spectrum E�f �s� of each avalanche for �=0.03 and L
=300b, normalizing by s2, and averaging over all avalanches longer
than a threshold duration.
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These results are largely independent of the details of the
model, such as the threshold value for the local stress to
create new dislocations. We have checked that the same re-
sults can be recovered even in the case with no dislocation
multiplication, where the avalanches are due to different
threshold mechanisms, such as unpinning of dislocation di-
poles. As this approach suffers from the fact that simulations
are computationally more demanding due to the longer time
scales one must reach, we have here restricted ourselves to
considering only the case where dislocation multiplication
does occur.

Knowing that the avalanches are self-affine one can also
compute 	st from the other known exponents. Consider the
probability DV�V �s� that a value V will occur at some point

during an avalanche of size s. Assuming scaling and requir-
ing normalization, �0

DV�V �s�dV=1, as well as V�=s /T
�s1−1/	st, one obtains �see also �20��

DV�V�s� = V−1fV�Vs1/	st−1� , �9�

where fV�x� is a scaling function. The total probability DV�V�
is then obtained by integrating DV�V �s� over the avalanche
size distribution Ds�s��s−�s, giving rise to DV�V�
�V−��	st�s−1�/�	st−1���V−�V. Miguel et al. �2� studied the statis-
tics of the quantity E= �
i�vi��2, and found that its distribu-
tion behaves as DE�E��E−�E, with �E�1.8. From �E= 1

2 ��V

+1� one may solve for 	st, resulting in �with �s�1.6 �8��

	st =
2�E − 2

2�E − �s − 1
� 1.6, �10�

in reasonable agreement with our results above.

V. CONCLUSIONS

In this work, we have demonstrated that a simple two-
dimensional dislocation system exhibits 1 / f� noise, so that
the relation �=	st can be explained by the scaling properties
of the avalanche dynamics. We have also considered the PS
of the global strain rate, with similar conclusions. These
findings lend themselves to experimental tests, e.g., as in the
creep experiments of ice single crystals �4�, in experiments
on deforming metallic single �micro�crystals �3,27�, and
could also be considered in experiments on colloidal crystals
�28�. In AE experiments performed with three-dimensional
systems, values consistent with mean field exponents have
been reported �4,27�, suggesting �=	st=2 �see Eq. �10��. It
is thus possible that to get quantitative agreement with ex-
periments, the full three-dimensional problem should be
studied, e.g., by means of simulations of a three-dimensional
dislocation dynamics model. Other issues not considered in
the present study include the possible relevance of quenched
disorder, e.g., in the form of forest dislocations, which would
provide strong pinning centers to resist dislocation motion.
One should note, however, that also the present model con-
tains a pinning force landscape generated by the dislocations
themselves �2�.

In polycrystals, avalanches interact with the grain bound-
aries, which will probably lead to a size-dependent avalanche
shape �29�. This means that Eq. �5� is no longer directly
applicable, presenting an interesting theoretical question.
Our theory assumes negligible correlations between ava-
lanches. In experiments, dislocation avalanches have been
found to exhibit a tendency to cluster in time, such that a
“mainshock” is typically followed by a sequence of few “af-
tershocks” �3,4�. While this may modify the low-frequency
part of the PS, the high-frequency part, corresponding to
correlations within individual avalanches, is still expected to
scale according to Eq. �8�.

Finally we note that in addition to materials with crystal-
line structure, one field where the use of spectral tools and
the study of avalanches might be used to characterize the

FIG. 4. �Color online� A comparison of the scaling of the power
spectra �solid lines� with that of s�1/T�� �dashed lines�, for a sys-
tem of linear size L=300b and various � values. The thick solid line
corresponds to �=	st=1.5. The inset shows the power spectrum of
the strain rate, for �=0.04. The results are averaged over several
random initial configurations. Both f and 1/T are reported in units
of �dDb.

FIG. 5. �Color online� Power spectra for two different system
sizes, L=200b and 300b, corresponding to on the average 300 and
600 dislocations in the steady state. The extension of the scaling
region of the PS is seen to increase with L. The results are averaged
over several random initial configurations. The frequency f is re-
ported in units of �dDb.
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spatio temporal behavior is the plasticity of noncrystalline
media, e.g., amorphous glasses, where the localization and
intermittency of plastic events have been recently demon-
strated in simulations �30,31�.
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